

MOCK MATHEMATICS SUBJECTIVE TEST CLASS – IX (SET – 2)

Maximum Marks: 80

Duration 3.0 Hours

Number System, Polynomials, Coordinate Geometry, Euclid's Geometry, Lines & Angles, Triangles, Heron's Formula, Linear Equation in Two Variables

General Instructions:

- **1.** This question paper consists of **38 questions**. All questions are compulsory.
- 2. Paper Pattern and Marking Scheme:
- 3. There are **Five Sections** in the question paper (Section **A**, **B**, **C**, **D** and **E**).
 - In Section A question numbers 1 to 20 are Multiple Choice Questions (MCQs) carrying 1 mark each.
 - In Section B question numbers 21 to 25 are Very Short Answer Questions (VSA) type questions carrying 2 marks each.
 - In Section C question numbers 26 to 31 are Short Answer Questions (SA) type questions carrying 3 marks each.
 - In Section D question numbers 32 to 35 are Long Answer Questions (LA) type questions carrying 5 marks each.
 - In Section E question numbers 36 to 38 are 3 source-based/case-based units of assessment carrying 4 marks each with sub-parts.
 - There is no overall choice. However, an internal choice has been provided in some Sections.

(SECTION – A)

1. Which one of the following is not a polynomial?

(A)
$$x^2 + \frac{5}{3}x + 2$$

(B) $3x^3 + x\left(x + \frac{1}{x}\right)$
(C) $\sqrt{x}\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) + 3$
(D) $\sqrt{x} + \frac{1}{\sqrt{x}} + \frac{1}{x}$

2. Side of an equilateral triangle is 2x. Find the area of triangle.

(A)
$$\sqrt{3}x^2$$
 (B) $\frac{\sqrt{3}}{2}x^2$ (C) $\frac{\sqrt{3}}{4}x^2$ (D) $2\sqrt{3}x^2$

3. Find the sum of supplement and compliment of 50° .

CLASS – IX

MATHEMATICS

- (A) 180° (B) 170° (C) 160° (D) 150°
- 4. Point of intersection of *x*-axis and *y*-axis is known as _____.
 (A) Abscissa (B) Ordinate (C) Origin (D) Coordinates

1

Which	n of the followi	ing is a fa	ctor of $7x^2$ +	8x + 1?			
(A)	(7x+1)	(B)	<i>x</i> +7	(C)	(7x + 2)	(D)	7x - 1
0. <u>12</u> i	in the form of	$\frac{p}{q}$.					
(A)	$\frac{1}{11}$	(B)	$\frac{5}{33}$	(C)	$\frac{4}{33}$	(D)	$\frac{2}{11}$
Find the	he distance bet	ween (-7	(3) from y-axi	is.			
(A) $\left(\left(\frac{1}{a}\right)\right)$	$+\frac{1}{b} \int_{-1}^{-1} \int_{-1}^{-1} (a + b)^{-1} db = 0$	$(B) -b)^{-1} equ$	-7 unit	(C)	5 unit	(D)	
(A)	$a^{-}+b^{-}$	(B)	a+b	(C)	ab	(D)	$a b^{-}$
Which (A) (B) (C) (D)	of the followi All right ang Equals of sat A terminated Sum of all at	ing needs de are equ me thing a d line can ngles of a	proof? al. are equals. be produce in triangle is 180	definitely o 0°.	on both sides.		
 Which (A) (B) (C) (D) In a Δ 	All right ang Equals of san A terminated Sum of all an <i>PQR</i> , <i>S</i> is mi	ing needs gle are equ me thing a d line can ngles of a id-point o	proof? al. are equals. be produce in triangle is 180 f <i>PR</i> such that	definitely of 0° . t $QS = \frac{1}{2}I$	on both sides. PR . Then, $2 \angle$	PQR is e	qual to:
 Which (A) (B) (C) (D) In a Δ (A) 	a of the followi All right ang Equals of sat A terminated Sum of all an <i>PQR</i> , <i>S</i> is mi 90°	ing needs the are equ me thing a d line can ngles of a id-point o (B)	proof? aal. are equals. be produce in triangle is 180 f <i>PR</i> such that 45°	definitely of 0°. the QS = $\frac{1}{2} R$ (C)	on both sides. P <i>R</i> . Then, 2∠ 60°	PQR is e	qual to: 180°
 Which (A) (B) (C) (D) In a Δ (A) In ΔA 	h of the followi All right ang Equals of sat A terminated Sum of all at PQR, S is mi 90° BC & ΔPQR	ing needs the are equivalent eq	proof? aal. are equals. be produce in triangle is 180 f <i>PR</i> such that 45° $\angle Q$, $\angle C = \angle$	definitely of 0° . $QS = \frac{1}{2}I$ (C) $\Delta R \& AC =$	on both sides. PR . Then, 2∠ 60° QR. Which of	<i>PQR</i> is ended by the follow	qual to: 180° ving is true?
 Which (A) (B) (C) (D) In a Δ (A) In ΔA (A) 	a of the followi All right ang Equals of sat A terminated Sum of all at PQR, S is mi 90° BC & ΔPQR $\Delta ABC \cong \Delta I$	ing needs the are equivalent are equivalent thing a d line can ingles of a id-point o (B) $R, \ \angle A = 2$ PQR	proof? aal. are equals. be produce in triangle is 180 f <i>PR</i> such that 45° $\angle Q$, $\angle C = \angle$	definitely of 0° . $QS = \frac{1}{2}I$ (C) ZR & AC = (B)	on both sides. PR . Then, $2 \angle 60^{\circ}$ QR. Which of $\Delta ABC \cong \Delta$	PQR is e (D) the follow QRP	qual to: 180° ving is true?
 Which (A) (B) (C) (D) In a Δ (A) (A) (C) 	a of the followi All right ang Equals of sat A terminated Sum of all at PQR, S is mid 90° $BC \& \Delta PQR$ $\Delta ABC \cong \Delta I$ $\Delta ABC \cong \Delta I$	ing needs the are equivalent are equivalent and the second seco	proof? aal. are equals. be produce in triangle is 180 f <i>PR</i> such that 45° $\angle Q$, $\angle C = \angle$	definitely of 0° . $QS = \frac{1}{2}R$ (C) ZR & AC = (B) (D)	on both sides. PR . Then, $2 \angle 60^{\circ}$ QR. Which of $\Delta ABC \cong \Delta$ $\Delta ABC \cong \Delta$	PQR is e (D) the follow QRP QPR	qual to: 180° ving is true?
Which (A) (B) (C) (D) In a Δ (A) In ΔA (C) In ΔA	a of the followi All right ang Equals of sat A terminated Sum of all at PQR, S is mid 90° $BC & \Delta PQR$ $\Delta ABC \cong \Delta I$ $\Delta ABC \cong \Delta I$ BC, AB = BC	ing needs the are equivalent are equivalent and the are equivalent and the equivalent are equival	proof? aal. are equals. be produce in triangle is 180 f <i>PR</i> such that 45° $\angle Q$, $\angle C = \angle$ and $CA = 6cR$	definitely of 0° . $QS = \frac{1}{2}R$ (C) CR & AC = (B) (D) m. Find the	on both sides. PR . Then, $2 \angle 60^{\circ}$ QR. Which of $\Delta ABC \cong \Delta$ $\Delta ABC \cong \Delta$ the area of ΔAB	PQR is e (D) the follow QRP QPR C.	qual to: 180° ving is true?
Which (A) (B) (C) (D) In a Δ (A) In ΔA (A) (C) In ΔA (A) (C)	a of the followi All right ang Equals of sat A terminated Sum of all and PQR, S is mini- 90° $BC & \Delta PQR$ $\Delta ABC \cong \Delta I$ $\Delta ABC \cong \Delta I$ BC, AB = B0 $6cm^2$	ing needs the are equivalent are equivalent and the are equivalent and the equivalent are equivalent and the equivalent are equivalent and the equivalent are equivalenta	proof? aal. are equals. be produce in triangle is 180 f <i>PR</i> such that 45° $\angle Q$, $\angle C = \angle$ and $CA = 6ct$ $12cm^{2}$	definitely of 0° . $QS = \frac{1}{2}R$ (C) CR & AC = (B) (D) m. Find the (C)	on both sides. PR. Then, $2 \angle 60^{\circ}$ QR. Which of $\Delta ABC \cong \Delta$ $\Delta ABC \cong \Delta$ the area of ΔAB $6\sqrt{2}cm^2$	PQR is e (D) the follow QRP QPR C. (D)	qual to: 180° ving is true? $12\sqrt{2}cm^{2}$
Which (A) (B) (C) (D) In a Δ (A) In ΔA (A) (C) In ΔA (A) (C) In ΔA (A) Find the formula of the fore	h of the followi All right ang Equals of sat A terminated Sum of all and PQR, S is mini- 90° $BC & \Delta PQR$ $\Delta ABC \cong \Delta D$ $\Delta ABC \cong \Delta D$ BC, AB = B0 $6cm^2$ he value of x if	ing needs the are equivalent are equivalent and the are equivalent and the equivalent are equivalent and the equivalent and the equivalent are equivalent and the equivalent are equival	proof? Ial. are equals. be produce in triangle is 180 f <i>PR</i> such that 45° $\angle Q$, $\angle C = \angle$ and $CA = 6ct$ $12cm^{2}$ $1^{1/5}$.	definitely of 0° . $QS = \frac{1}{2}R$ (C) CR & AC = (B) (D) <i>m</i> . Find the (C)	on both sides. PR. Then, $2 \angle 60^{\circ}$ QR. Which of $\Delta ABC \cong \Delta$ $\Delta ABC \cong \Delta$ the area of ΔAB $6\sqrt{2}cm^2$	PQR is each (D) The follow QRP QPR C. (D)	qual to: 180° ving is true? $12\sqrt{2}cm^{2}$
Which (A) (B) (C) (D) In a Δ (A) In ΔA (A) (C) In ΔA (A) Find th (A)	h of the followi All right ang Equals of sat A terminated Sum of all and PQR, S is mini- 90° $BC & \Delta PQR$ $\Delta ABC \cong \Delta D$ $\Delta ABC \cong \Delta D$ BC, AB = B0 $6cm^2$ he value of x iff $\frac{1}{5}$	ing needs the are equivalent are equivalent and the are equivalent and the equivalent of a second state of a second st	proof? Ial. are equals. be produce in triangle is 180 f <i>PR</i> such that 45° $\angle Q$, $\angle C = \angle$ and $CA = 6ct$ $12cm^{2}$ $1^{1/5}$. $1\frac{2}{3}$	definitely of 0° . $QS = \frac{1}{2}I$ (C) CR & AC = (B) (D) <i>m</i> . Find the (C) (C)	on both sides. PR. Then, $2 \angle 60^{\circ}$ QR. Which of $\Delta ABC \cong \Delta$ $\Delta ABC \cong \Delta$ the area of ΔAB $6\sqrt{2}cm^2$ $\frac{4}{15}$	PQR is end (D) The follow QRP QPR C. (D) (D)	qual to: 180° ving is true? $12\sqrt{2}cm^{2}$ $\frac{2}{5}$
Which (A) (B) (C) (D) In a Δ (A) In ΔA (A) (C) In ΔA (A) Find th (A) Which	h of the followi All right ang Equals of sat A terminated Sum of all and PQR, S is mini- 90° $BC & \Delta PQR$ $\Delta ABC \cong \Delta D$ $\Delta ABC \cong \Delta D$ BC, AB = BC $6cm^2$ the value of x iff $\frac{1}{5}$ in of the followi	ing needs the are equivalent are equivalent and the are equivalent are equivalent and the caning and the caning are solved as the constraint of the caning are solved as the canonic of	proof? Ial. are equals. be produce in triangle is 180 f <i>PR</i> such that 45° $\angle Q$, $\angle C = \angle$ and $CA = 6ct$ $12cm^{2}$ $1^{1/5}$. $1\frac{2}{3}$ tion of $x + 2y$	definitely of 0° . $QS = \frac{1}{2}R$ (C) CR & AC = (B) (D) m. Find the (C) (C) (C) (C) (C) (C) (C)	on both sides. PR . Then, $2 \angle 60^{\circ}$ QR. Which of $\Delta ABC \cong \Delta$ $\Delta ABC \cong \Delta$ the area of ΔAB $6\sqrt{2}cm^{2}$ $\frac{4}{15}$	PQR is ea (D) the follow QRP QPR C. (D) (D)	qual to: 180° ving is true? $12\sqrt{2}cm^2$ $\frac{2}{5}$

Simplify: $\sqrt[4]{81} - 8\sqrt[3]{27} + 15\sqrt[5]{32} + \sqrt{225}$

CLASS – IX

MATHEMATICS

OR

3

24. If x + y = s + w, prove that *AOB* is a straight line.

In the figure, if a ray OC stands on line AB such that $\angle AOC = \angle COB$, then show that $\angle AOC = 90^{\circ}$.

25. In the figure, *AD* and *BC* are equal and perpendiculars to the same line segment *AB*. Show that *CD* bisects *AB*.

(SECTION - C)

26. In the figure, if $AB \parallel CD$, then find $\angle PQR$.

- 27. The perimeter of an isosceles triangle is 32cm. The ratio of one of the equal sides to its base is 3:2. Find the area of the triangle.
- **28.** In the figure, $\angle BCD = \angle ADC$ and $\angle ACB = \angle BDA$. Prove that AD = BC and $\angle A = \angle B$.

In the figure, AC = AE, AB = AD and $\angle BAD = \angle EAC$. Show that BC = DE.

29. See the figure and write the following:

5

- (i) Co-ordinates of point *A*
- (ii) Abscissa of point D

(iii) The point identified by the co-ordinate (5, 4)

CLASS – IX

MATHEMATICS

30. The polynomials $p(x) = ax^3 + 4x^2 + 3x - 4$ and $q(x) = x^3 - 4x + a$ leave the same remainder when divided by x - 3. Find the remainder when p(x) is divided by (x - 2).

OR

If
$$x + y + z = 9$$
, then find the value of $(3-x)^3 + (3-y)^3 + (3-z)^3 - 3(3-x)(3-y)(3-z)$

31. If
$$x = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}$$
 and $y = \frac{2 + \sqrt{3}}{2 - \sqrt{3}}$, then find the value of $x^4 + y^2$.
(SECTION – D)

32. Simplify:
$$\frac{1}{2+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{6}} + \frac{1}{\sqrt{6}+\sqrt{7}} + \frac{1}{\sqrt{7}+\sqrt{8}} + \frac{1}{\sqrt{8}+\sqrt{9}}$$

Simplify:
$$\frac{\sqrt{6}}{\sqrt{2} + \sqrt{3}} + \frac{3\sqrt{2}}{\sqrt{6} + \sqrt{3}} - \frac{4\sqrt{3}}{\sqrt{6} + \sqrt{2}}$$

33. In the figure, $AB \| CD$ and $CD \| EF$. Also $EA \perp AB$. If $\angle BEF = 55^{\circ}$, find the values of x, y and z.

34. In the given figure, $\triangle ABC$ has sides $AB = 7.5 \, cm$, $AC = 6.5 \, cm$ and $BC = 7 \, cm$. On base BC a parallelogram *DBCE* of same area as that of $\triangle ABC$ is constructed. Find the height *DF* of the parallelogram.

36. An electric pole was titled due to heavy winds by an angle of 80°. Now despite the tilt, the electric wire lines remained parallel to each other and the ground. Now, using the given information, answer the following questions.

(iii) The shares of Ankur and Ranjan invested individually are:

CLASS – IX

MATHEMATICS

- (2x+1), (2x+5)(2x+3), (x+1)**(A) (B)**
- **(C)** (x+1), (x+3)None of these **(D**)
- (iv) What is the name of the polynomial which represents the amount that both have invested?
 - Cubic **(A) (B)** Quadratic
 - **(C) (D)** Linear Biquadratic
- 38. Triangles are used to make bridges because a triangle is an unreformable shape, as considered in the civil engineering field, it can hold the most force when applied to it, compared to quadrilaterals and arches. Isosceles triangles were used to construct a bridge in which the base (unequal side) of an isosceles triangle is 4 m and its perimeter is 20 m.

(i)	What is the length of equal sides?										
	(A)	2 <i>m</i>	(B)	3 <i>m</i>	(C)	8 <i>m</i>	(D)	10 <i>m</i>			
(ii)	What is the Heron's formula for a triangle?										
	(A)	$\sqrt{s(s+a)(s+a)}$	(s-b)(s-b)	$\overline{c)}$	(B)	$\sqrt{s(s+a)(s+b)(s+c)}$					
	(C)	$\sqrt{s(s-a)}$	(s-b)(s-b)	<i>c</i>)	(D)	$\sqrt{s(s.a)(s.b)(s.c)}$					
(iii)	What is the semi perimeter of the given triangle?										
	(A)	30 <i>m</i>	(B)	40 <i>m</i>	(C)	10 <i>m</i>	(D)	50m			
(iv)	What is the area of the given triangle?										
	(A)	$4\sqrt{15} m^2$	(B)	$4m^2$	(C)	$\sqrt{15}m^2$	(D)	$20m^2$			

8